Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.01.22281744

ABSTRACT

Although the development of COVID-19 vaccines has been a remarkable success, the heterogeneous individual antibody generation and decline over time are unknown and still hard to predict. In this study, blood samples were collected from 163 participants who next received two doses of an inactivated COVID-19 vaccine (CoronaVac) at a 28-day interval. Using TMT-based proteomics, we identified 1715 serum and 7342 peripheral blood mononuclear cells (PBMCs) proteins. We proposed two sets of potential biomarkers (seven from serum, five from PBMCs) using machine learning, and predicted the individual seropositivity 57 days after vaccination (AUC = 0.87). Based on the four PBMC's potential biomarkers, we predicted the antibody persistence until 180 days after vaccination (AUC = 0.79). Our data highlighted characteristic hematological host responses, including altered lymphocyte migration regulation, neutrophil degranulation, and humoral immune response. This study proposed potential blood-derived protein biomarkers for predicting heterogeneous antibody generation and decline after COVID-19 vaccination, shedding light on immunization mechanisms and individual booster shot planning.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256776

ABSTRACT

Disrupted antiviral immune responses are associated with severe COVID-19, the disease caused by SAR-CoV-2. Here, we show that the 73-amino-acid protein encoded by ORF9c of the viral genome contains a putative transmembrane domain, interacts with membrane proteins in multiple cellular compartments, and impairs antiviral processes in a lung epithelial cell line. Proteomic, interactome, and transcriptomic analyses, combined with bioinformatic analysis, revealed that expression of only this highly unstable small viral protein impaired interferon signaling, antigen presentation, and complement signaling, while inducing IL-6 signaling. Furthermore, we showed that interfering with ORF9c degradation by either proteasome inhibition or inhibition of the ATPase VCP blunted the effects of ORF9c. Our study indicated that ORF9c enables immune evasion and coordinates cellular changes essential for the SARS-CoV-2 life cycle. One-sentence summarySARS-CoV-2 ORF9c is the first human coronavirus protein localized to membrane, suppressing antiviral response, resembling full viral infection.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256735

ABSTRACT

There is an urgent need to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) that leads to COVID-19 and respiratory failure. Our study is to discover differentially expressed genes (DEGs) and biological signaling pathways by using a bioinformatics approach to elucidate their potential pathogenesis. The gene expression profiles of the GSE150819 datasets were originally produced using an Illumina NextSeq 500 (Homo sapiens). KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) were utilized to identify functional categories and significant pathways. KEGG and GO results suggested that the Cytokine-cytokine receptor interaction, P53 signaling pathway, and Apoptosis are the main signaling pathways in SARS-CoV-2 infected human bronchial organoids (hBOs). Furthermore, NFKBIA, C3, and CCL20 may be key genes in SARS-CoV-2 infected hBOs. Therefore, our study provides further insights into the therapy of COVID-19.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.16.20176065

ABSTRACT

The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report an in-depth multi-organ proteomic landscape of COVID-19 patient autopsy samples. By integrative analysis of proteomes of seven organs, namely lung, spleen, liver, heart, kidney, thyroid and testis, we characterized 11,394 proteins, in which 5336 were perturbed in COVID-19 patients compared to controls. Our data showed that CTSL, rather than ACE2, was significantly upregulated in the lung from COVID-19 patients. Dysregulation of protein translation, glucose metabolism, fatty acid metabolism was detected in multiple organs. Our data suggested upon SARS-CoV-2 infection, hyperinflammation might be triggered which in turn induces damage of gas exchange barrier in the lung, leading to hypoxia, angiogenesis, coagulation and fibrosis in the lung, kidney, spleen, liver, heart and thyroid. Evidence for testicular injuries included reduced Leydig cells, suppressed cholesterol biosynthesis and sperm mobility. In summary, this study depicts the multi-organ proteomic landscape of COVID-19 autopsies, and uncovered dysregulated proteins and biological processes, offering novel therapeutic clues. HIGHLIGHTSO_LICharacterization of 5336 regulated proteins out of 11,394 quantified proteins in the lung, spleen, liver, kidney, heart, thyroid and testis autopsies from 19 patients died from COVID-19. C_LIO_LICTSL, rather than ACE2, was significantly upregulated in the lung from COVID-19 patients. C_LIO_LIEvidence for suppression of glucose metabolism in the spleen, liver and kidney; suppression of fatty acid metabolism in the kidney; enhanced fatty acid metabolism in the lung, spleen, liver, heart and thyroid from COVID-19 patients; enhanced protein translation initiation in the lung, liver, renal medulla and thyroid. C_LIO_LITentative model for multi-organ injuries in patients died from COVID-19: SARS-CoV-2 infection triggers hyperinflammatory which in turn induces damage of gas exchange barrier in the lung, leading to hypoxia, angiogenesis, coagulation and fibrosis in the lung, kidney, spleen, liver, heart, kidney and thyroid. C_LIO_LITesticular injuries in COVID-19 patients included reduced Leydig cells, suppressed cholesterol biosynthesis and sperm mobility. C_LI


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256578

ABSTRACT

There is an urgent need for a safe and protective vaccine to control the global spread of SARS-CoV-2 and prevent COVID-19. Here, we report the immunogenicity and protective efficacy of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length SARS-CoV-2 spike (S) glycoprotein stabilized in the prefusion conformation. Cynomolgus macaques (Macaca fascicularis) immunized with NVX-CoV2373 and the saponin-based Matrix-M adjuvant induced anti-S antibody that was neutralizing and blocked binding to the human angiotensin-converting enzyme 2 (hACE2) receptor. Following intranasal and intratracheal challenge with SARS-CoV-2, immunized macaques were protected against upper and lower infection and pulmonary disease. These results support ongoing phase 1/2 clinical studies of the safety and immunogenicity of NVX-CoV2327 vaccine (NCT04368988). HighlightsO_LIFull-length SARS-CoV-2 prefusion spike with Matrix-M1 (NVX-CoV2373) vaccine. C_LIO_LIInduced hACE2 receptor blocking and neutralizing antibodies in macaques. C_LIO_LIVaccine protected against SARS-CoV-2 replication in the nose and lungs. C_LIO_LIAbsence of pulmonary pathology in NVX-CoV2373 vaccinated macaques. C_LI


Subject(s)
COVID-19 , Lung Diseases
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.14.20131078

ABSTRACT

Little is known regarding why a subset of COVID-19 patients exhibited prolonged positivity of SARS-CoV-2 infection. Here, we present a longitudinal sera proteomic resource for 37 COVID-19 patients over nine weeks, in which 2700 proteins were quantified with high quality. Remarkably, we found that during the first three weeks since disease onset, while clinical symptoms and outcome were indistinguishable, patients with prolonged disease course displayed characteristic immunological responses including enhanced Natural Killer (NK) cell-mediated innate immunity and regulatory T cell-mediated immunosuppression. We further showed that it is possible to predict the length of disease course using machine learning based on blood protein levels during the first three weeks. Validation in an independent cohort achieved an accuracy of 82%. In summary, this study presents a rich serum proteomic resource to understand host responses in COVID-19 patients and identifies characteristic Treg-mediated immunosuppression in LC patients, nominating new therapeutic target and diagnosis strategy.


Subject(s)
COVID-19
7.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3570565

ABSTRACT

Severe COVID-19 patients account for most of the mortality of this disease. Early detection and effective treatment of severe patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model correctly classified severe patients with an accuracy of 93.5%, and was further validated using ten independent patients, seven of which were correctly classified. We identified molecular changes in the sera of COVID-19 patients implicating dysregulation of macrophage, platelet degranulation and complement system pathways, and massive metabolic suppression. This study shows that it is possible to predict progression to severe COVID-19 disease using serum protein and metabolite biomarkers. Our data also uncovered molecular pathophysiology of COVID-19 with potential for developing anti-viral therapies.Funding: This work is supported by grants from Westlake Special Program for COVID19 (2020), and Tencent foundation (2020), National Natural Science Foundation of China (81972492, 21904107, 81672086), Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR19C050001), Hangzhou Agriculture and Society Advancement Program (20190101A04). Conflict of Interest: The research group of T.G. is partly supported by Tencent, Thermo Fisher Scientific, SCIEX and Pressure Biosciences Inc. C.Z., Z.K., Z.K. and S.Q. are employees of DIAN Diagnostics.


Subject(s)
COVID-19 , Sleep Disorders, Circadian Rhythm
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.07.20054585

ABSTRACT

Severe COVID-19 patients account for most of the mortality of this disease. Early detection and effective treatment of severe patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model correctly classified severe patients with an accuracy of 93.5%, and was further validated using ten independent patients, seven of which were correctly classified. We identified molecular changes in the sera of COVID-19 patients implicating dysregulation of macrophage, platelet degranulation and complement system pathways, and massive metabolic suppression. This study shows that it is possible to predict progression to severe COVID-19 disease using serum protein and metabolite biomarkers. Our data also uncovered molecular pathophysiology of COVID-19 with potential for developing anti-viral therapies.


Subject(s)
COVID-19 , Blood Platelet Disorders
SELECTION OF CITATIONS
SEARCH DETAIL